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Second Step of the Algorithm

The second step operates on the submatrix obtained by ignoring the first row and column.

Otherwise, it is identical to the first step:

Compute and apply Householder reflector.
Identify pivot and possibly swap columns.

When columns are interchanged, the full columns are swapped, not just the parts in the
submatrix.

This is equivalent to performing the interchange before the QR process starts.
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Case: Matrix Has Full Rank

If the matrix has full rank, the algorithm terminates after m steps.

The result is a decomposition:
AΠ = QR

Where:

Π is a column permutation matrix,
Q ∈ Rn×n is orthogonal,
R ∈ Rn×m is upper triangular and nonsingular.
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Case: Matrix Does Not Have Full Rank

If A does not have full rank, at some step we will encounter τi = 0.

This occurs when all entries in the remaining submatrix are zero.

Suppose this occurs after r steps.

Let Qi ∈ Rn×n denote the reflector used at step i .

Sk. Safique Ahmad GIAN Course on Solving Linear Systems and Computing Generalized Inverses Using Recurrent Neural Networks June 09-19, 2025, IIT Indore, (The Least Squares Problem and SVD)June 13, 2025 4 / 73



Structure of R and Reflectors

Let RH ∈ Rr×r be the upper triangular part constructed from the first r steps.

Then:

R =

[
RH ∗
0 0

]
The diagonal entries of RH are −τ1,−τ2, . . . ,−τr , all nonzero.

Clearly, rank(R) = r .
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Final Form of the Decomposition

Let:
Q = Q1Q2 · · ·Qr

Then:
QT = QrQr−1 · · ·Q1

Therefore:
QTA = R and A = QR

Since rank(A) = rank(R) = r , we conclude:

rank(A) = r
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Theorem 3.3.11

Theorem: Let A ∈ Rn×m with rank r > 0. Then there exist matrices:

Π ∈ Rm×m: a permutation matrix,

Q ∈ Rn×n: orthogonal,

R ∈ Rn×m: upper triangular,

such that:
AΠ = QR

where:

R =

[
RH ∗
0 0

]
, RH ∈ Rr×r is nonsingular.
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Least Squares Problem Setup

Given A ∈ Rn×m, b ∈ Rn, we seek x ∈ Rm that minimizes:

∥Ax − b∥2

If A has full column rank, the solution is unique.

If A is rank-deficient (i.e., rank(A) = r < m), the problem has infinitely many
solutions.
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QR Decomposition with Column Pivoting

Apply QR with column pivoting: AΠ = QR

Q ∈ Rn×n: orthogonal

R =

[
R1 R2

0 0

]
, where:

R1 ∈ Rr×r is upper triangular and nonsingular,
r = rank(A) < m

Π ∈ Rm×m: permutation matrix
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Reduced Least Squares System

Let y = ΠT x , then:
QRy ≈ b ⇒ Ry ≈ QTb

Partition y =

[
y1
y2

]
, where:

R =

[
R1 R2

0 0

]
, y1 ∈ Rr , y2 ∈ Rm−r

Solve:
R1y1 = (QTb)1:r

y2 is free (arbitrary) ⇒ infinite solutions.
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General Solution Form

General solution to the least squares problem:

x = Π

[
R−1
1 (QTb)1:r

free vector y2

]
The solution set forms an affine subspace:

x = xparticular + null(A)

The set of solutions is infinite due to dim(null(A)) = m − r > 0
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Minimum Norm Solution

Among infinite solutions, one may choose the one with minimum ∥x∥2
This is called the minimum norm least squares solution:

xmin = A†b

where A† is the Moore–Penrose pseudoinverse.

In QR terms:

xmin = Π

[
R−1
1 (QTb)1:r

0

]
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MATLAB Code: Infinite Least Squares Solutions

1 % Rank -deficient matrix A and vector b

2 A = [1 2 3 4; 2 4 6 8; 3 6 9 12]; % rank 2

3 b = [1; 2; 3];

4

5 % QR decomposition with column pivoting

6 [Q, R, P] = qr(A, ’vector ’);

7

8 % Determine rank numerically

9 tol = max(size(A)) * eps(norm(R, ’fro’));

10 r = sum(abs(diag(R)) > tol);

11

12 % Solve R1 * y1 = Q^T * b (first r components)

13 R1 = R(1:r, 1:r);

14 Qt_b = Q’ * b;

15 b1 = Qt_b (1:r);

16 y1 = R1 \ b1;
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1 x = zeros(size(A,2), 1); x(P) = y;

2 disp(’Minimum-norm solution:’); disp(x);
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Classical Gram-Schmidt Algorithm

Given linearly independent vectors v1, v2, . . . , vm ∈ Rn

Produces orthonormal vectors q1, q2, . . . , qm such that:

span{q1, . . . , qi} = span{v1, . . . , vi}, for i = 1, . . . ,m

Algorithm:

q1 =
v1

∥v1∥
for k = 2 to m

for j = 1 to k − 1

rjk = q⊤j vk

vk = vk − rjkqj

end

rkk = ∥vk∥, qk =
vk
rkk
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Gram-Schmidt as QR Decomposition

Let A = [v1, v2, . . . , vm] ∈ Rn×m

The Gram-Schmidt process gives:
A = QR

where:

Q = [q1, q2, . . . , qm] is orthonormal (Q⊤Q = I )
R is upper triangular with entries rjk = q⊤j vk

Each vk can be written as:

vk =
k∑

j=1

rjkqj

In matrix form:
A = QR (Gram-Schmidt gives QR)
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MATLAB Code for Classical Gram-Schmidt

function [Q, R] = classical_gs(A)

[n, m] = size(A);

Q = zeros(n, m);

R = zeros(m, m);

for k = 1:m

v = A(:,k);

for j = 1:k-1

R(j,k) = Q(:,j)’ * A(:,k);

v = v - R(j,k) * Q(:,j);

end

R(k,k) = norm(v);

Q(:,k) = v / R(k,k);

end

end
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Summary

Classical Gram-Schmidt orthogonalizes vectors sequentially.

It is numerically unstable for nearly linearly dependent vectors.

The resulting decomposition A = QR links the process directly to matrix factorization.

Modified Gram-Schmidt improves numerical stability.
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Modified Gram-Schmidt Overview

Modified Gram-Schmidt (MGS) is a numerically more stable variant of the classical
method.

Orthogonalizes column by column using updated vectors.

Better handles near-linear dependence in columns.

Produces A = QR where:

Q: orthonormal columns
R: upper triangular matrix
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MATLAB Code: Modified Gram-Schmidt

function [Q, R] = modified_gs(A)

[n, m] = size(A);

Q = zeros(n, m);

R = zeros(m, m);

V = A;

for i = 1:m

R(i,i) = norm(V(:,i));

Q(:,i) = V(:,i) / R(i,i);

for j = i+1:m

R(i,j) = Q(:,i)’ * V(:,j);

V(:,j) = V(:,j) - R(i,j) * Q(:,i);

end

end

end
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Example Matrix

Let

A =

 1 1
10−10 0
0 10−10


Columns of A are nearly linearly dependent

Classical Gram-Schmidt fails due to loss of orthogonality

Modified Gram-Schmidt maintains orthogonality
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Numerical Stability Comparison

Compute Q⊤Q:

Classical GS: Q⊤Q ̸= I (orthogonality lost)
Modified GS: Q⊤Q ≈ I

Stability matters in ill-conditioned problems

Use ‘norm(Q’*Q - eye(size(Q,2)))‘ in MATLAB to test
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Remark

Modified Gram-Schmidt is more stable than the classical version.

Especially important when vectors are nearly linearly dependent.

For numerical work, prefer MGS or Householder QR over classical GS.
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Given Vectors

v1 =


3
−3
3
−3



v2 =


1
2
3
4


Define S = span{v1, v2} ⊂ R4
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Step (a): Gram-Schmidt Process

u1 = v1

r11 = ∥u1∥ =
√
32 + (−3)2 + 32 + (−3)2 =

√
36 = 6

q1 =
u1
r11

=
1

6


3
−3
3
−3

 =


0.5
−0.5
0.5
−0.5


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Continue Gram-Schmidt

r12 = qT1 v2 = [0.5,−0.5, 0.5,−0.5] · [1, 2, 3, 4]T

= 0.5(1) + (−0.5)(2) + 0.5(3) + (−0.5)(4) = −1

u2 = v2 − r12q1 = v2 + q1 =


1.5
1.5
3.5
3.5


r22 = ∥u2∥ =

√
1.52 + 1.52 + 3.52 + 3.52 =

√
32 = 4

√
2

q2 =
u2
r22

=
1

4
√
2


1.5
1.5
3.5
3.5


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Step (b): Construct Q and R

Q =


0.5 1.5

4
√
2

−0.5 1.5
4
√
2

0.5 3.5
4
√
2

−0.5 3.5
4
√
2

 , R =

[
6 −1

0 4
√
2

]

Then, V = QR

Sk. Safique Ahmad GIAN Course on Solving Linear Systems and Computing Generalized Inverses Using Recurrent Neural Networks June 09-19, 2025, IIT Indore, (The Least Squares Problem and SVD)June 13, 2025 27 / 73



QR Decomposition Method Comparison

Let V ∈ R30×20 with entries:

V (i , j) =

(
j

20

)i−1

, i = 1, . . . , 30, j = 1, . . . , 20

Such matrices are called Vandermonde matrices.

Highly ill-conditioned:
κ2(V ) ≈ 3× 1013

Indicates columns are nearly linearly dependent.
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Numerical Experiment

Goal: Compare orthogonality of Q from QR decomposition methods.

Metric: ∥I − Q⊤Q∥2
IEEE double-precision unit roundoff: u ≈ 10−16

Expect error for stable methods: ≈ κ(V ) · u ≈ 3× 10−3
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QR Method Comparison on Vandermonde Matrix

Comparison of orthogonality error ∥I − Q⊤Q∥2:

Method ∥I − Q⊤Q∥2
Classical Gram-Schmidt 12.4
Modified Gram-Schmidt ≈ 3× 10−4

Householder QR (Reflectors) ≈ 1.9× 10−15

Table: *

QR decomposition results for highly ill-conditioned Vandermonde matrix
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Remark

Classical Gram-Schmidt: fails in preserving orthogonality for ill-conditioned matrices.

Modified Gram-Schmidt: more stable but still sensitive to ill-conditioning.

Householder QR: highly stable, preferred in practice.

Recommendation: Use Householder QR or SVD for high-accuracy applications.
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Singular Value Decomposition (SVD),
Moore Penrose Inverse
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Bases and Matrices in the SVD

The Singular Value Decomposition is a highlight of linear algebra. A is any m × n matrix,
square or rectangular. Its rank is r . We will diagonalize this A, but not by X−1AX .

The eigenvectors in X have three big problems:

They are usually not orthogonal,

there are not always enough eigenvectors, and Ax = λx requires A to be a square matrix.

The singular vectors of A solve all those problems in a perfect way.
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Theorem 4.1.1 (SVD Theorem)

Let A ∈ Rn×m be a nonzero matrix of rank r . Then:
Singular Value Decomposition (SVD) There exist orthogonal matrices:

U ∈ Rn×n, V ∈ Rm×m

and a ”diagonal” matrix:
Σ ∈ Rn×m

such that:
A = UΣV⊤
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Structure of the SVD

U = [u1 u2 . . . un] with U⊤U = In

V = [v1 v2 . . . vm] with V⊤V = Im

Σ has the form:

Σ =


σ1

σ2
. . .

σr
0


where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of A.
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Geometric Interpretation

A maps the orthonormal basis vectors of Rm (columns of V ) to scaled orthogonal vectors
in Rn (columns of U).

Each σi represents the stretching factor along the direction vi .

The rank r of A equals the number of nonzero singular values.
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Remark

Every real matrix A ∈ Rn×m has a Singular Value Decomposition.

A = UΣV⊤, where:

U ∈ Rn×n and V ∈ Rm×m are orthogonal,
Σ ∈ Rn×m is diagonal with singular values.

The SVD is a fundamental tool in numerical linear algebra, data compression, and PCA.
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Theorem (Geometric SVD Theorem)

Let A ∈ Rn×m be a nonzero matrix of rank r . Then:

There exists an orthonormal basis {v1, . . . , vm} of Rm

And an orthonormal basis {u1, . . . ,un} of Rn

And singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0

Such that:
Avi = σiui for i = 1, . . . , r

Avi = 0 for i = r + 1, . . . ,m

ATui = σivi for i = 1, . . . , r

ATui = 0 for i = r + 1, . . . , n
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Geometric Interpretation

A maps the unit vectors vi in Rm to scaled orthogonal vectors σiui in Rn.

The first r directions are scaled by σi > 0, and the rest are mapped to 0.

The image of the unit sphere in Rm under A is a hyperellipse in Rn.
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Exercise 4.1.5: From Algebraic SVD to Geometric SVD

Let A = UΣV⊤ be the SVD of A, where:

Columns of V = [v1, . . . , vm]

Columns of U = [u1, . . . ,un]

Then:
Avi = UΣV⊤vi = σiui (i = 1, . . . , r)

The matrix multiplication AV = UΣ implies that each vi is mapped to σiui .

When σi = 0, Avi = 0.

Thus, the geometric form follows directly from the standard SVD expression.
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SVD and the Four Fundamental Subspaces

The SVD provides orthonormal bases for the fundamental subspaces of A ∈ Rn×m.

R(A) = Col(A) = span{u1, . . . ,ur} ⊆ Rn

N (A) = Null(A) = span{vr+1, . . . , vm} ⊆ Rm

R(A⊤) = Row(A) = span{v1, . . . , vr} ⊆ Rm

N (A⊤) = Left Null Space = span{ur+1, . . . ,un} ⊆ Rn

These follow directly from the SVD:
A = UΣV⊤
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Corollary: Rank-Nullity Relation

Corollary 4.1.9 Let A ∈ Rn×m. Then:

dim(R(A)) + dim(N (A)) = m

That is, the sum of the dimensions of the column space and the null space equals the
number of columns.

This result, also known as the Rank-Nullity Theorem, follows from the orthogonality
and completeness of the columns of V ∈ Rm×m.

Similarly, dim(R(A⊤)) + dim(N (A⊤)) = n.
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(a) Structure of Rank-1 Matrix

Proof: Let A ∈ Rn×m have rank 1.

Then all columns of A lie in Range(A) = span(u1).

Choose ∥u1∥ = 1, then A = u1wT for some w ∈ Rm.

Define v1 =
w

∥w∥ , σ1 = ∥w∥, so:
A = σ1u1v

T
1
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(b) Orthonormal Extension

Extend u1 to an orthonormal basis of Rn: U = [u1 · · · ] ∈ Rn×n

Similarly, extend v1 to V = [v1 · · · ] ∈ Rm×m

Define:

Σ =

σ1 0 · · ·
0 0 · · ·
...

...


n×m

⇒ A = UΣV T

This gives the SVD of a rank-1 matrix.
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(c) Leading Singular Value and Vector

Let A ∈ Rn×m, rank(A) = r > 1

Let v1 maximize ∥Av∥2 over unit vectors.

Then u1 =
Av1

∥Av1∥ , and define:

σ1 = ∥Av1∥ = ∥A∥2
Let U = [u1 · · · ], V = [v1 · · · ], define:

B = UTAV =

[
σ1 zT

0 A1

]
⇒ A = UBV T
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(d) Showing z = 0

Suppose B =

[
σ1 zT

0 A1

]
Take x =

[
cos θ
sin θw

]
, ∥w∥ = 1

Then ∥Bx∥2 = σ2
1 cos

2 θ + ∥zTw∥2 sin2 θ + ∥A1w∥2 sin2 θ
Since σ1 is the largest singular value, optimization implies z = 0
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(e) Completing the SVD Inductively

Since z = 0, B =

[
σ1 0
0 A1

]
rank(A1) = r − 1. By induction, SVD of A1 = U1Σ1V

T
1

Embed into full SVD of A as:

A = U

[
σ1 0
0 Σ1

]
V T

This gives an SVD for general A ∈ Rn×m of rank r .
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Theorem 4.1.10: Condensed SVD

Condensed Singular Value Decomposition (SVD)
Let A ∈ Rn×m be a nonzero matrix of rank r . Then:
Condensed SVD Form There exist:

Ur ∈ Rn×r with orthonormal columns (U⊤
r Ur = Ir )

Vr ∈ Rm×r with orthonormal columns (V⊤
r Vr = Ir )

A diagonal matrix Σr ∈ Rr×r with positive entries σ1 ≥ σ2 ≥ · · · ≥ σr > 0

such that:
A = UrΣrV

⊤
r
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Exercise: Proving the Condensed SVD

Start from the full SVD:
A = UΣV⊤

where U ∈ Rn×n, Σ ∈ Rn×m, V ∈ Rm×m

Partition as:

U = [Ur Ū], Σ =

[
Σr 0
0 0

]
, V = [Vr V̄ ]

Then:
A = UΣV⊤ = UrΣrV

⊤
r

by removing the zero blocks.
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Example: Compute the SVD of A =

[
3 0
4 5

]
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The rank is r = 2, so A has two positive singular values σ1 and σ2. We will find:
- σ1 > λmax = 5 - σ2 < λmin = 3
Begin by computing ATA and AAT :

ATA =

[
3 4
0 5

]T [
3 0
4 5

]
=

[
25 20
20 25

]
, AAT =

[
9 12
12 41

]

Both matrices have the same trace (50) and determinant (225). Their eigenvalues are:
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σ2
1 = 45, σ2

2 = 5 ⇒ σ1 =
√
45, σ2 =

√
5

Then σ1σ2 = 15, which is the determinant of A.
Now, we find the eigenvectors of ATA:
For σ2

1 = 45: [
25 20
20 25

] [
1
1

]
= 45

[
1
1

]
⇒ v1 =

1√
2

[
1
1

]
For σ2

2 = 5: [
25 20
20 25

] [
1
−1

]
= 5

[
1
−1

]
⇒ v2 =

1√
2

[
1
−1

]
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Then we compute ui =
Avi
σi

to get the columns of U.

This gives the full SVD: A = UΣV T .
The right singular vectors are:

v1 =
1√
2

[
1
1

]
, v2 =

1√
2

[
1
−1

]
Now compute:

Av1 = A · 1√
2

[
1
1

]
=

1√
2

[
3
4

]
+

1√
2

[
0
5

]
=

1√
2

[
3
9

]
=

√
45 · 1√

10

[
1
3

]
= σ1u1

Av2 = A · 1√
2

[
1
−1

]
=

1√
2

[
3
4

]
− 1√

2

[
0
5

]
=

1√
2

[
3
−1

]
=

√
5 · 1√

10

[
3
−1

]
= σ2u2
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This gives:

u1 =
1√
10

[
1
3

]
, u2 =

1√
10

[
3
−1

]
The singular value decomposition is:

A = UΣV T

Where:

U =
1√
10

[
1 3
3 −1

]
, Σ =

[√
45 0

0
√
5

]
, V =

1√
2

[
1 1
1 −1

]
(7)

U and V contain orthonormal bases for the column space and row space of A. These bases
diagonalize A:

AV = UΣ ⇒ UTAV = Σ
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A as a Sum of Rank-One Matrices

σ1u1v
T
1 + σ2u2v

T
2 =

√
45 · 1√

10

[
1
3

]
· 1√

2

[
1 1

]
+
√
5 · 1√

10

[
3
−1

]
· 1√

2

[
1 −1

]
=

√
45√
20

[
1
3

] [
1 1

]
+

√
5√
20

[
3
−1

] [
1 −1

]
= A

Consider:

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


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Observations:

All eigenvalues of A are 0.

Only one eigenvector: (1, 0, 0, 0)T .

Singular values: σ = 3, 2, 1, 0

Singular vectors are columns of the identity matrix.

This example shows how the SVD provides much more structural insight than the
eigen-decomposition, especially for non-symmetric or defective matrices.
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SVD Setup

Let A ∈ Rn×m with rank r , and let:
A = UΣV T

where:

U ∈ Rn×n, V ∈ Rm×m are orthogonal,

Σ =


σ1

. . .

σr
0

 ∈ Rn×m

σ1 ≥ σ2 ≥ · · · ≥ σr > 0
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Transforming the Problem

We want to solve the least squares problem:

min
x

∥Ax − b∥2

Using the orthogonality of U and V , let:

c = UTb, y = V T x

Then:
∥Ax − b∥2 = ∥UΣV T x − b∥2 = ∥Σy − c∥2
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Minimizing the Residual

The residual becomes:

∥Σy − c∥22 =
r∑

i=1

(σiyi − ci )
2 +

n∑
i=r+1

c2i

This is minimized when:
yi =

ci
σi
, i = 1, . . . , r

yr+1, . . . , ym arbitrary (do not affect residual)
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Minimum Norm Solution

To find the solution x with minimal ∥x∥2, we must minimize ∥y∥2.
This is achieved when:

yr+1 = · · · = ym = 0

Hence, the minimum-norm least-squares solution is:

x = Vy =
r∑

i=1

ci
σi
vi

or equivalently:
x = A+b

where A+ = VΣ+UT is the Moore-Penrose pseudoinverse.
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Moore-Penrose Pseudoinverse

Let A ∈ Rn×m be a matrix of rank r , with SVD:

A = UΣV T

Then the Moore-Penrose pseudoinverse A† is given by:

A† = VΣ†UT

where Σ† ∈ Rm×n is formed by:

Σ† =


1/σ1

. . .

1/σr
0


with σ1, . . . , σr > 0 the nonzero singular values of A.

Sk. Safique Ahmad GIAN Course on Solving Linear Systems and Computing Generalized Inverses Using Recurrent Neural Networks June 09-19, 2025, IIT Indore, (The Least Squares Problem and SVD)June 13, 2025 60 / 73



Exercise– Matrix Form of Pseudoinverse

Given the full SVD of A:
A = UΣV T

Then:
A†U = VΣ†

Because U is orthogonal:
A† = VΣ†UT

This representation is exact and satisfies all four Moore-Penrose conditions.
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Condensed Form of the SVD

Let Ur ∈ Rn×r , Vr ∈ Rm×r denote the first r columns of U and V , and Σr ∈ Rr×r the
diagonal matrix of nonzero singular values.
Then:

A = UrΣrV
T
r

A† = VrΣ
−1
r UT

r

This form is efficient and commonly used in numerical computation.
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Why Use the Pseudoinverse?

Solves the least-squares problem:

min
x

∥Ax − b∥2 ⇒ x = A†b

Works even when A is not full-rank.

Provides the minimum-norm solution when there are infinitely many.

The pseudoinverse is essential in data fitting, control theory, and machine learning.
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Exercise: Moore-Penrose Characterization

Theorem: Let A ∈ Rn×m, and let B ∈ Rm×n. Then B = A† if and only if:

(1) ABA = A

(2) BAB = B

(3) (AB)T = AB

(4) (BA)T = BA

Proof Outline:

If B = A† from SVD, all four properties hold.

Conversely, any matrix B satisfying these four conditions must be A†.
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Setup: SVD of A

Let A ∈ Rn×m with full column rank m, and let

A = UΣV T

be the singular value decomposition, where:

U ∈ Rn×n, UTU = In

V ∈ Rm×m, V TV = Im

Σ =

[
diag(σ1, . . . , σm)

0

]
∈ Rn×m
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SVDs of Related Matrices

Matrix SVD Expression Singular Values

ATA VΣTΣV T σ2
i

(ATA)−1 V (ΣTΣ)−1V T 1/σ2
i

(ATA)−1AT VΣ−1UT 1/σi

A(ATA)−1 UΣ−1V T 1/σi
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Observations

ATA and (ATA)−1 are symmetric and positive definite.

(ATA)−1AT = A†: the Moore-Penrose pseudoinverse of A.

A(ATA)−1 is the pseudoinverse of AT .

All SVDs use the same orthogonal matrices U and V , but scale differently.
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Diagonal Structure of ATA and AAT

We always start with ATA and AAT . They are diagonal (with easy v ’s and u’s):

ATA =


0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9

 , AAT =


1 0 0 0
0 4 0 0
0 0 9 0
0 0 0 0


The eigenvalues of ATA (and AAT ) are σ2 = 9, 4, 1 (nonzero), corresponding to singular
values σ1 = 3, σ2 = 2, σ3 = 1.
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Their corresponding orthonormal eigenvectors (in order of decreasing singular values) are:

U =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , Σ =


3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0

 , V =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


The first columns u1 and v1 have 1’s in positions 3 and 4. Then the matrix u1σ1v

T
1 picks out

the largest number in A, which is A3,4 = 3.
Thus the SVD of A is:

A = UΣV T = 3u1v
T
1 + 2u2v

T
2 + 1u3v

T
3
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Effect of Removing a Zero Row

Suppose we remove the last row of A (which is entirely zeros). Then A becomes a 3× 4
matrix and AAT becomes 3× 3. Its fourth row and column disappear.
However, the eigenvalues of ATA and AAT remain the same: λ = 1, 4, 9, so the singular values
are still σ = 3, 2, 1. We just remove the last row of Σ, and the last row and column of U:

A3×4 = U3×3Σ3×4V
T
4×4

The SVD naturally accommodates rectangular matrices.
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Stability of Singular Values vs. Eigenvalue Instability

The 4× 4 matrix A provides a powerful illustration of the instability of eigenvalues. Suppose
the (4, 1) entry of A is changed slightly—from 0 to 1

60,000 .
Consider the matrix:

A =


0 1 0 0
0 0 2 0
0 0 0 3
1

60,000 0 0 0


This small change in the (4, 1) entry (only 1/60,000) creates a much larger effect in the
eigenvalues of A. Originally, with a zero in the (4, 1) position, the eigenvalues of A were all
zero:

λ = 0, 0, 0, 0

After the change, the eigenvalues move to four points on a circle in the complex plane
centered at the origin, with radius 1

10 :

λ =
1

10
,
1

10
i ,− 1

10
,− 1

10
i

This dramatic movement of eigenvalues due to a tiny change in A illustrates the
**instability** of eigenvalues when AAT is far from ATA.
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At the other extreme, when ATA = AAT (i.e., A is a **normal matrix**), the eigenvectors of
A are orthogonal, and the eigenvalues are completely stable.
Singular Values Are Stable.
By contrast, the singular values of A remain stable under small perturbations. In this case, the
new singular values are:

σ = 3, 2, 1,
1

60,000

The singular vectors (U and V ) remain essentially unchanged. The fourth piece of the SVD is:

σ4u4v
T
4 =

1

60,000
u4v

T
4

—mostly zeros, except for the new small entry.
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Thank You !
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